
PIRM Presentation 2
EE / CprE / SE 492 – sddec20-proj01

Machine learning for pilot biometrics
Team Members:
Jianhang Liu, Feng Lin, Xuewen Jiang, Xiuyuan Guo,
Sicheng Zeng, Junjie Chen
Email: zengsc@iastate.edu
Sponsor: Rockwell Collins

Project Goals

● Improve existing machine learning algorithm in terms of :
○ Higher Accuracy

■ Increased training dataset
■ Data pre-manipulating

○ Less Latency
■ FPGA(DPU)
■ Pruning
■ Hyper-Parameter
■ Data pre-manipulating

○ Less Memory
■ Pruning
■ Data pre-manipulating
■ quantization

Current Status

Hardware:
● Loaded existing FPGA design (DPU implementation).
● Communication between CPU and DPU
● daughter card design for our edge(ULTRA96v2 development board). （BOM，Schematic, layout)

Hyper-parameter:
● Using grid search to find optimized number for hyper-parameter such as batch size, kernel size , activation function

and etc.
Pruning:

● After pruning our model, we can use less memory for the inference.
Data Pre-manipulating:

● Over exposure image will improve the result.
● The gabor filter and other types of filters will decrease performance of the model.

Technical Challenges

● Compatibility (versions, model format)
○ Software,system versions
○ Model format such as quantized model or .h5 model

● PCB design
○ Don’t have experience on assemble PCB and testing

● FPGA implementation
○ DPU configuration
○ DPU communication

PCB Design: Schematic & Layout

- Re-routing for better schematic design

- Tools: PCB123

- Schematic: Xuewen Jiang

- Layout: Jianhang Liu and Issac

- BOM, 3 pages of schematic, 4 layer PCB

board, 85mmx54mm

- Estimated finishing time: in a week Jianhang (1)

Image processing
- In order to improve system performance (reduce time

delay and memory usage, improve accuracy, etc.)

- Many ways to process image (e.g. edge detection, noise

reduction, gabor filter)

- Some improve overall performance while others not.

- Need multiple trails to decide best filter parameters.

Jianhang (2)

Example of edge detection,
Image from BogoToBogo

Port the Algorithm to FPGA

● Traditionality done with vivado, HDL
● ‘Vitis AI’ stack for fast scripting

● pre-built DPU support conv,pool.. operation

● feed in the model->run the scripts->mapping of

network on FPGA

Junjie Chen

FPGA for our project
● In our project we are using Xilinx DPU(Deep learning process

unit) technology to approach FPGA acceleration goal.
● DPU could accelerate inference speed for our model

○ Multi-thread(Pthread)
○ Multiple layers speed up implementation

● The workflow will be:
○ Capture data from camera send them to the DPU so that

DPU could calculate weights, bais and activation
function for the CPU(in this case our CPU will be Arm
Cortex A53)

○ Then output the result from DPU to CPU
○ We could connect a display device to show what final

output from CPU.

Reference:https://www.xilinx.com/support/documentation/ip_document
ation/dpu/v3_2/pg338-dpu.pdf

https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf
https://www.xilinx.com/support/documentation/ip_documentation/dpu/v3_2/pg338-dpu.pdf

Prune-Make model have less memory

Pruning means eliminating
unnecessary values in the
weight tensors.

Model visualization

Make model visualization can help us
to improve accuracy. We need to learn
how to prune in a way that doesn’t
impact the accuracy this much. This is
why we want to visualize the data so
we prune in a less impactful way.

 ANN visualizer

Improved model by Hyperparameter tuning

● Decreased memory usage and latency by reduce the hidden layer.

● Improve the later on accuracy by finding the best epoch for our model using early stopping

● Improve the later on accuracy by find the best learning rate so far by use the grid search on the

model

● Combine the data preprocess data to reduce the filter layer and pool layer that make the latency

decrease

● Used grid search to find the optimizer, batch size, kernel size, strip size, activation function and

node number of our model.

The Result come out with original latency of 23ms per data to 19ms per data, And current accuracy is

96.73%

